Data Warehouse and Data Mining

Lecture No. 07

Data Modeling

Naeem Ahmed
Email: naeemmahoto@gmail.com

Department of Software Engineering
Mehran University of Engineering and Technology Jamshoro
Physical Models

• Based on the physical model used:
 – DOLAP (Desktop OLAP)
 – MOLAP (Multidimensional OLAP)
 – ROLAP (Relational OLAP)
 – HOLAP (Hybrid OLAP)
OLAP

- A decision support system (DSS) that support ad-hoc querying, i.e. enables managers and analysts to interactively manipulate data.
- Analysis of information in a database for the purpose of making management decision.
- The idea is to allow the users to easy and quickly manipulate and visualize the data through multidimensional views (i.e. different perspectives).
- OLAP (OnLine Analytical Processing) analyzes historical data (terabytes) using complex queries.
OLAP

• OLAP Council definition:
 – A category of software technology that enables analysts, managers and executives to gain insight into data through fast, consistent, interactive access to a wide variety of possible views of information that has been transformed from raw data to reflect the real dimensionality of the enterprise as understood by the user.

• OLAP is implemented in a multi-user client/server mode and offers consistently rapid response to queries, regardless of database size and complexity.
OLAP

- OLAP primarily involves aggregating large amounts of diverse data
- OLAP functionality provides dynamic multi-dimensional analysis, supporting analytical and navigational activities
- OLAP functionality is provided by the OLAP Server
- OLAP Council defines OLAP Server as:
 - ‘A high capacity, multi-user data manipulation engine specifically designed to support and operate on multi-dimensional data structures.’
OLTP vs. OLAP

<table>
<thead>
<tr>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational processing</td>
<td>Informational processing</td>
</tr>
<tr>
<td>Transaction-oriented</td>
<td>Analysis-oriented</td>
</tr>
<tr>
<td>For operational staffs</td>
<td>For managers, executive & analysts</td>
</tr>
<tr>
<td>Daily operations</td>
<td>Decision support</td>
</tr>
<tr>
<td>Current, up-to-date data</td>
<td>Historical data</td>
</tr>
<tr>
<td>Primitive, highly detailed data</td>
<td>Summarized, consolidated data</td>
</tr>
<tr>
<td>Detailed, flat relational views</td>
<td>Summarized, multi-dimensional views</td>
</tr>
<tr>
<td>Short, simple transactions</td>
<td>Complex aggregate queries</td>
</tr>
<tr>
<td>Read/write</td>
<td>Mostly read only</td>
</tr>
<tr>
<td>Index on keys</td>
<td>Many scans</td>
</tr>
<tr>
<td>Many users</td>
<td>Small number of users</td>
</tr>
<tr>
<td>Large databases</td>
<td>Very large databases</td>
</tr>
</tbody>
</table>
OLTP vs. OLAP

• On-Line Transaction Processing
 – Transfer $100 balance from my saving account to my checking account

• On-Line Analytical Processing
 – What is the average balance of accounts by customer groups, account types, areas, account managers, and their combinations?
Physical Models

• DOLAP
 - Developed as extension to the production system reports
 - It downloads a small hypercube from a central point (data mart or DW)
 - Performs multidimensional analysis while disconnected from the data source
 - The **computation occurs on the client**
 - Requires little investment
 - They lack the ability to manage large data sets
 - All processing work is done in the **desktop**
 - E.g, bring data into Excel and build a pivot table
Physical Models

- **MOLAP**
 - Presentation layer provides the multidimensional view
 - The OLAP server stores data in a multidimensional structure
 - Computation occurs in this layer during the **loading step** (not at query)
 - Advantages
 - Excellent performance
 - Fast data retrieval
 - Optimal for slicing and dicing
 - All calculations are pre-generated when the cube is created
Physical Models

• MOLAP
 – Disadvantages
 • Limited amount of data it can handle
 – Cube can be derived from large amount of data, but only summary level information will be included in the cube
 • Requires additional investment
 – Cube technology are often proprietary
 • Enormous amount of overhead
 – An input file of 200 MB can expand to 5 GB with calculations
 – Products
 • Cognos (IBM), Essbase (Oracle), Microsoft Analysis Service, Palo (open source)
Physical Models

• ROLAP
 – Presentation layer provides the multidimensional view
 – The ROLAP Server generates SQL queries, from the OLAP OLAP requests, to query the RDBMS
 – Data is stored in RDBs
Physical Models

• ROLAP
 – Special schema design: e.g., star, snowflake
 – Special indexes: e.g., bitmap, R-Trees
 – Advantages
 • Proven technology (relational model, DBMS)
 • Can handle large amounts of data (VLDBs)
 – Disadvantages
 • Limited SQL functionalities
 – Products
 • Microsoft Analysis Service, Siebel Analytics (now Oracle BI), Micro Strategy, Mondrian (open source)
ROLAP vs. MOLAP

- Based on OLAP needs

<table>
<thead>
<tr>
<th>OLAP needs</th>
<th>MOLAP</th>
<th>ROLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidimensional View</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Excellent Performance</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Analytical Flexibility</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Real-Time Data Access</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>High Data Capacity</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Easy Development</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Low Structure Maintenance</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Low Aggregate Maintenance</td>
<td>✓</td>
<td>-</td>
</tr>
</tbody>
</table>
Physical Models

• HOLAP
 – Best of both models
 • Storing detailed data in RDBs
 • Storing aggregated data in MDBs
 – Different partitioning approaches between MOLAP and ROLAP
 • Vertical
 • Horizontal
HOLAP

• Vertical partitioning
 – Aggregations are stored in MOLAP for **fast query performance**
 – Detailed data in ROLAP to **optimize time of cube processing** (loading the data from the OLTP)

• Horizontal partitioning
 – HOLAP stores some slice of data, usually the more recent one (i.e. sliced by Time dimension) in MOLAP for fast query performance
 – Older data in ROLAP
HOLAP

• Other approaches
 – Store some cubes in MOLAP and others in ROLAP, leveraging the fact that in a large cuboid, there will be dense and sparse sub-regions
Conclusions

• ROLAP
 – RDBMS - star/snowflake schema
 – For detailed and larger volumes of data (TB)

• MOLAP
 – MDBMS - Cube structures, array based storage
 – For summarized and relatively “small” volumes of data (50GB)

• HOLAP is emerging as the OLAP server of choice
Summary

• Logical Model
 – Cubes, Dimensions, Hierarchies, Classification Levels

• Physical Level
 – Relational Implementation through:
 • Star schema: improves query performance for often-used data
 – Less tables and simple structure
 – Efficient query processing with regard to dimensions
 – In some cases, high overhead of redundant data
 • Snowflake schema: reduce the size of the dimension tables
 – However, through dimension normalization - large number of tables
Summary

• Physical Level
 – Array based storage
 • How to perform linearization
 • Problems:
 – Order of dimensions – solution: caching
 – Dense Cubes, Sparse Cubes - solution: 2 level storage
 – MOLAP, ROLAP, HOLAP