Data Warehouse and Data Mining

Lecture No. 02
Lifecycle of Data warehouse

Naeem Ahmed
Email: naeemmahoto@gmail.com
Department of Software Engineering
Mehran University of Engineering and Technology Jamshoro
Outline

• Lifecycle of DW

• Classical SDLC vs. DW SDLC

• Operating DW

Acknowledgements: Wolf-Tilo Balke and Silviu Homoceanu
http://www.ifis.cs.tu-bs.de
Lifecycle of DW

Data Warehouse System Development Life Cycle (SDLC)

- **Design**
 - End-user interview cycles
 - Source system cataloging
 - Definition of key performance indicators
 - Mapping of decision-making processes underlying information needs
 - Logical and physical schema design
Lifecycle of DW

• Prototype
 – Objective is to **constrain** and in some cases **reframe** end-user requirements

• Deployment
 – Development of documentation
 – Training
 – Operations and management processes

• Operation
 – Day-to-day maintenance of the DW needs a good management of ongoing **Extraction**, **Transformation** and **Loading** (ETL) process
Lifecycle of DW

- **Enhancement** needs the modification of
 - HW - physical components
 - Operations and management processes
 - Logical schema designs
Lifecycle of DW

• Classical SDLC vs. DW SDLC

• DW SDLC is almost the *opposite* of classical SDLC
Lifecycle of DW

- Classical SDLC vs. DW SDLC

<table>
<thead>
<tr>
<th>Classical SDLC</th>
<th>DW SDLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements gathering</td>
<td>Implement warehouse</td>
</tr>
<tr>
<td>Analysis</td>
<td>Integrate data</td>
</tr>
<tr>
<td>Design</td>
<td>Test for bias</td>
</tr>
<tr>
<td>Programming</td>
<td>Program against data</td>
</tr>
<tr>
<td>Testing</td>
<td>Design DSS system</td>
</tr>
<tr>
<td>Integration</td>
<td>Analyze results</td>
</tr>
<tr>
<td>Implementation</td>
<td>Understand requirements</td>
</tr>
</tbody>
</table>

- Because it is the opposite of SDLC, DW SDLC is also called CLDS
Lifecycle of DW

• CLDS is a **data driven** development life cycle
• It starts with data
 – Once data is at hand it is integrated and tested against bias
 – Programs are written against the data and the results are analyzed and finally the requirements of the system are understood
 – Once requirements are understood, adjustments are made to the design and the cycle starts all over
• “**spiral development methodology**”
Operating a DW

• In Operating a DW the following phases can be identified
 – Monitoring
 – Extraction
 – Transforming
 – Loading
 – Analyzing
Operating a DW: Monitoring

• Monitoring
 – Surveillance of the data sources
 – Identification of data modification which is relevant to the DW
 – Monitoring has an important role over the whole process deciding on which data the next steps will be applied on

• Monitoring techniques
 – Active mechanisms - Event Condition Action (ECA) rules:

 | EVENT | Payment |
 |-------|--------------------------|
 | CONDITION | Account sum > 10 000 € |
 | ACTION | Transfer to economy account |
Operating a DW: Monitoring

• Monitoring techniques
 – Replication mechanisms
 • Snapshot:
 – Local copy of data, similar to a View
 – Used by Oracle 9i
 • Data replication
 – Replicates and maintains data in destination tables through data propagation processes
 – Used by IBM
Operating a DW: Monitoring

• Monitoring techniques
 – Protocol based mechanisms
 • Since DBMS write protocol data for transaction management, the protocol can be used also for monitoring
 • Difficult due to the fact that the protocol format is proprietary and subject to change
 – Application managed mechanisms
 • Hard to implement for legacy systems
 • Based on time stamping or data comparison
Operating a DW: Extraction

- **Extraction**
 - Reads the data which was selected throughout the monitoring phase and inserts it in the data structures of the workplace
 - Due to large data volume, compression can be used
 - The time-point for performing extraction can be:
 - Periodical:
 - Weather or stock market information can be actualized more times in a day, while product specification can be actualized in a longer period of time
 - On request:
 - For example when a new item is added to a product group
Operating a DW: Extraction

• Extraction
 – The time-point for performing extraction can be:
 • Event driven:
 – Event driven extraction can be helpful in scenarios where time, or the number of modifications over passing a specified threshold triggers the extraction. For example each night at 03:00 or each time 50 new modifications took place, an extraction is performed
 • Immediate:
 – In some special cases like the stock market it can be necessary that the changes propagate immediately to the warehouse
 – The extraction largely depends on hardware and the software used for the DW and the data source
Operating a DW: Transforming

- Transforming
 - Implies adapting data, schema as well as data quality to the application requirements
- Data integration:
 - Transformation in de-normalized data structures
 - Handling of key attributes
 - Adaptation of different types of the same data
 - Conversion of encoding:
 - “Buy”, “Sell” → 1,2 vs. B,S → 1,2
 - Normalization:
 - “Michael Schumacher” → “Michael, Schumacher” vs. “Schumacher Michael” → “Michael, Schumacher”
Operating a DW: Transforming

- Transforming
 - Data integration:
 - Date handling:
 - “MM-DD-YYYY” \Rightarrow “MM.DD.YYYY”
 - Measurement units and scaling:
 - 10 inch \Rightarrow 25.4 cm
 - 30 mph \Rightarrow 48.279 km/h
 - Save calculated values
 - Price_incl_VAT = Price_excl_VAT * 1.19
 - Aggregation
 - Daily sums can be added into weekly ones
 - Different levels of granularity can be used
Operating a DW: Transforming

• Transforming
 – Data cleaning:
 • Consistency check
 – Delivery_date < Order_date
 • Completeness
 – Management of missing values as well as NULL values
Operating a DW: Loading

• Loading
 – Loading usually takes place during weekends or nights when the system is not under user stress
 – Split between initial load to initialize the DW and the periodical load to keep the DW updated
 – Initial loading
 • Implies big volumes of data and for this reason a bulk loader is used
 – Usually performed by partitioning, parallelization and incremental actualization
Operating a DW: Analyzing

• Analyze
 – Data access
 • Useful for extracting goal oriented information:
 – How many iPhones 3G were sold in the Braunschweig stores of T-Mobile in the last 3 calendar weeks of 2008?
 – Although it is a common OLTP query, it might be too complex for the operational environment to handle
 – OLAP
 • Falsely used as representing DW because it is used to analyze data contained in DW
 • Used to answer requests like:
 – In which district does a product group register the highest profit
 – How did the profit change in comparison to the previous month?
Operating a DW: Analyzing

• Analyze
 – OLAP
 • Used to answer requests like:
 – Mostly known as organized on a multidimensional data model
 – Common operations for analyze are:
 » Pivoting/Rotation
 » Roll-up, Drill-down and Drill-across
 » Slice and Dice
 – Data mining
 • Useful for identifying hidden patterns
 • Refers to two separate processes:
 – KDD (Knowledge Discovery in Databases)
 – Prediction
Operating a DW: Analyzing

• Analyze
 – Data mining
 • Useful for answering questions like:
 – How did the sales of this product group evolve?
 • Methods and procedures for data mining
 – Clustering, Classification, Regression, Association rule learning